

BOLETIN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS 19 (5): 492 - 494 (2020)

© / ISSN 0717 7917 / www.blacpma.ms-editions.cl

Articulo de Opinión / Opinion Article

Kaempferol: an encouraging flavonoid for COVID-19

[Kaempferol: un flavonoide alentador para COVID-19]

Roohollah Ahmadian^{1,2,3}, Roja Rahimi⁴ & Roodabeh Bahramsoltani^{2,4}

¹Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran

²PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran

³Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran

⁴Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran Contacto / Contact: Roodabeh BAHRAMSOLTANI - E-mail address: roodabeh.b.s.88@hotmail.co.uk

Recent global pandemic caused by a member of betacoronaviruses family, SARS-CoV-2, has caused a question of great interest in a wide range of fields. Particularly, finding therapeutic agents has become a central issue to combat COVID-19 disease. Considering the host response and viral load in tissues as two crucial factors for selecting an appropriate molecule, we highlighted probable effect of kaempferol, a plant-derived flavonoid on SARS-CoV-2 infection (Rajendran *et al.*, 2014).

By looking precisely to coronaviruses life cycle in host cell, there are three major serial steps include: virus entry, viral replication, and its release from the host cell. While the two formers are important parts of viral life cycle, the latter one is essential for infection progression. The protein 3a (U274) which is the largest accessory viral channel forming protein and contains 274 amino acids plays a critical role in coronaviral particles release phase (Chien et al., 2013). The formed three transmembrane domain potassium channel is responsible for K^+ efflux and subsequently, the increased Ca²⁺ concentration in cytoplasm which results in exocytosis of mature virions (Schwarz et al., 2014).In addition to viral release procedure, 3a protein role in caspase-1 activation and its consequent stimulatory effect on NLRP3 inflammasome which are important in IL-1 β secretion and pyroptotic death in lung cells, respectively, was also demonstrated (Yue et al., 2018; Chen et al., 2019).

Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one) is a yellow flavonol widely found in several fruits and vegetables of human diet in glycosylated or aglycone form with previously demonstrated antioxidant, anti-inflammatory and antiviral activities (Calderon-Montano et al., 2011). Using Xenopus oocyte, 3a protein of SARS-CoV was expressed to evaluate inhibitory effect of kaempferol and its derivatives. Despite significant inhibition of kaempferol on 3a protein, kaempferol glycosides with better solubility exhibited stronger inhibition. Efficacy of all compounds was measured by Ba⁺²sensitive current. Juglanin, a glycoside of kaempferol with arabinose moiety, potently inhibited 3a protein activity with 2.3 µM value of IC₅₀ (Schwarz et al., 2014).

There is also a growing body of literature that recognizes the importance of cytokine storm in clinical status of COVID-19 patients. Indeed, nonregulated immune response and further hyperinflammation are responsible for the severity of COVID-19 symptoms (Ye et al., 2020). Restoring encumbered immune status of patients by antiinflammatory agents is an optimal choice in severe cases. Immunomodulatory effects of kaempferol have been reported by both in vitro and in vivo investigations and revealed that kaempferol glucorhamnoside could inhibit NF-kB and MAP kinase phosphorylation. Significant reduction in IL-

Este artículo puede ser citado como / This article must be cited as: R Ahmadian, R Rahimi, R Bahramsoltani. 2020. Kaempferol: an encouraging flavonoid for COVID-19. Bol Latinoam Caribe Plant Med Aromat 19 (5): 492 - 494. http://doi.org/10.37360/blacpma.20.19.5.33

1 β , IL-6 and TNF- α levels was also observed in an *in vivo* study (Yang *et al.*, 2020; Sun *et al.*, 2019).

Along with this exacerbation in immune response; however, there is increasing concern over oxidative stress which is flared-up consequently. Regarding to this, antioxidant properties of kaempferol reported by Yang et al. in lung ischemiareperfusion injury model with significant superoxide dismutase elevation and decrease in malondialdehyde could additionally confirm previous evidence (Yang *et al.*, 2020). Figure No. 1 depicted multifactorial beneficial effects of kaempferol briefly.

As 72% of parallelism in 3a protein sequence has been observed between SARS-CoV-2 and SARS-CoV withal functional domains conservation (Issa *et al.*, 2020), inhibiting 3a protein by both mutilation of virus release and amelioration in IL-1 β secretion as a pioneer in inflammatory cascade seems to be a promising strategy against SARS-CoV-2.

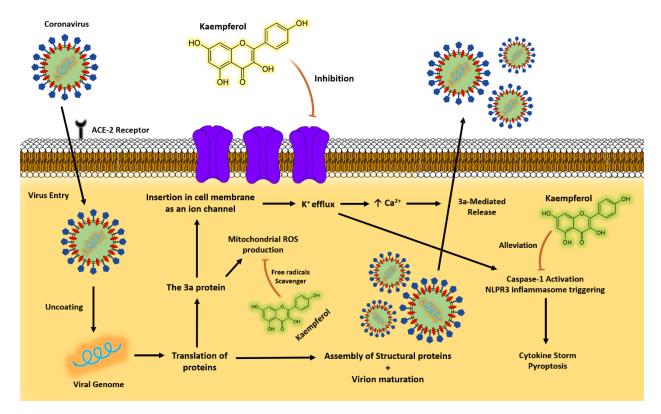


Figure No. 1 Probable beneficial effects of kaempferol in SARS-CoV-2 infection

REFERENCES

Calderon-Montano M J., Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. 2011. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11: 298 - 344. https://doi.org/10.2174/138955711795305335
Chen IY, Moriyama M, Chang MF, Ichinohe T. 2019. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol 10: 50. https://doi.org/10.3389/fmicb.2019.00050
Chien TH, Chiang YL, Chen CP, Henklein P, Hänel K, Hwang IS, Willbold D, Fischer WB. 2013. Assembling an ion channel: ORF 3a from SARS-CoV. Biopolymers 99: 628 - 635. https://doi.org/10.1002/bip.22230
Issa E, Merhi G, Panossian B, Salloum T, Tokajian S. 2020. SARS-CoV-2 and ORF3a: Nonsynonymous mutations, functional domains, and viral pathogenesis. mSystems 5. https://doi.org/10.1128/msystems.00266-20
Rajendran P, Rengarajan T, Nandakumar N, Palaniswami R, Nishigaki Y, Nishigaki I. 2014. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem 86: 103 - 112.

https://doi.org/10.1016/j.ejmech.2014.08.011

Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas/507

- Schwarz S, Sauter D, Wang K, Zhang R, Sun B, Karioti A, Bilia AR, Efferth T, Schwarz W. 2014. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med 80: 177 - 182. https://doi.org/10.1055/s-0033-1360277
- Sun Z, Li Q, Hou R, Sun H, Tang Q, Wang H, Hao Z, Kang S, Xu T, Wu S. 2019. Kaempferol-3-Oglucorhamnoside inhibits inflammatory responses via MAPK and NF-κB pathways in vitro and in vivo. Toxicol Appl Pharmacol 364: 22 - 28. https://doi.org/10.1016/j.taap.2018.12.008
- Yang C, Yang W, He Z, He H, Yang X, Lu Y, Li H. 2020. Kaempferol Improves Lung Ischemia-Reperfusion Injury via Antiinflammation and Antioxidative Stress Regulated by SIRT1/HMGB1/NF-κB Axis. Front Pharmacol 10: 1635. https://doi.org/10.3389/fphar.2019.01635
- Ye Q, Wang B, Mao J. 2020. The pathogenesis and treatment of the Cytokine Storm'in COVID-19. J Infect 80: 607 613. https://doi.org/10.1016/j.jinf.2020.03.037
- Yue Y, Nabar NR, Shi CS, Kamenyeva O, Xiao X, Hwang IY, Wang M, Kehrl JH. 2018. SARS-Coronavirus open reading frame-3a drives multimodal necrotic cell death. Cell Death Dis 9: 1 - 15. https://doi.org/10.1038/s41419-018-0917-y